
An Interactive Compiler Development System

Gary S. Tyson, Robert J. Shaw and Matthew K. Farrens
Division of Computer Science

University of California, Davis, CA 95616

email: tyson@cs.ucdavis.edu, tel: (916) 752-7004

Abstract

An interactive compilation environment has been

developed to facilitate the rapid prototyping of machine

dependent code optimization strategies for the Decoupled

Processor Design project under development at University

of California, Davis. This paper describes an interactive

graphical optimizer based on the Tcl and Tk libraries. An

overview of the optimizer is presented along with some

motivation for the unique features it provides.

1. Introduction

The development of high performance architectures

requires considerable interaction between the architectural

specification and the machine specific optimizations per-

formed to exploit the capabilities of the architecture. These

optimizations often expand on more general techniques

found in current compilers [Stal]. However, few tools exist

to aid in the integration of new and existing optimization

techniques. We hav e developed an Interactive Graphical

Optimizer (IaGO) to facilitate the construction of a high

performance code optimizer for new target architectures.

This system allows for much greater control of the applica-

tion of optimization techniques by incorporating a Tcl based

script language into the code optimizer. In addition, the use

of Tk to generate an interactive interface between the com-

piler developer and the internals of the optimizer allows for

new code optimization strategies to be applied on the fly.

2. Motivation

New high performance architectures are currently

being developed at numerous university and corporate

research centers. At UC Davis, we are investigating new

architectural approaches that exploit the implicit Instruc-

tion-Level Parallelism (ILP) found in conventional sequen-

tial programs (in our case, C source programs). The

increased capacity found in these new architectures requires

more sophistication on the part of the compiler to realize an

improvement in performance. Generally, the more complex

the architecture, the less applicable current compiler tech-

nology becomes in the generation of efficient code. We

have dev eloped a set of tools to facilitate the design and

analysis of the Multiple Instruction Stream Computer

(MISC) [TyFP92] architecture and simplify the construction

of new optimization strategies suited to the unique

capabilities of this architecture. This paper briefly discusses

one of these tools, IaGO, which provides an interactive

compilation environment used to develop prototype code

optimization strategies for MISC and other new architec-

tures.

The MISC architecture uses multiple asynchronous

processing elements to separate a program into instruction

streams that can be executed in parallel. Unlike other

MIMD1 architectures, MISC has been designed to separate

a task into multiple, finely interleaved instruction streams

which cooperate to execute a sequential task; this is the

same ILP exploited by Superscalar architectures such as

DEC’s Alpha processor [Site93]. The partitioning of the

task requires the compiler to identify both independent and

dependent operations and to assign them to different pro-

cessing elements. The separation of instructions to exploit

ILP is a relatively new strategy and compiler support is

unavailable. IaGO allows new optimization strategies to be

attempted with minimal delay and with much greater flexi-

bility than current optimizers — which generally use com-

mand line arguments to specify which optimization tech-

niques should be tried. Among the questions that we wish

to study are optimal strategies for instruction stream separa-

tion, tradeoffs in register allocation and instruction schedul-

ing, and methods for hiding operational latencies by con-

trolling the asynchronous entry of processing elements into

basic blocks.

IaGO provides two key advantages over alternative

compiler models. First, the application and ordering of

optimization methods can be specified by a command script,

allowing alternative schemes to be attempted without regen-

erating the compiler. This is important because the relation-

ship among code transformations is complex and the effects

of architectural dependencies can exclude particular trans-

formations or particular orderings of optimizations. Sec-

ond, with the use of Tk, the compiler developer can interact

with the internals of the optimizer during the compilation

process. Code can be hand optimized by allowing the

developer to manipulate the internal representation of the

program (e.g. rewrite the intermediate language program

description or modify dataflow information). This allows

1 Multiple Instruction / Multiple Data



new optimization strategies to be evaluated without the

necessity of coding them in C or as an optimization script.

3. Compiler Overview

Once we decided to develop a compiler model for

MISC, a study was made of existing compilers and the very

portable C compiler (vpcc) [BeDa91] was chosen as the

base model for IaGO. The design of vpcc, ongoing at the

University of Virginia, is an extension of the portable C

compiler developed at Bell Labs. The vpcc compiler is sep-

arated into two phases: the parser or front-end and the code

optimizer or back-end (see figure 1).

Code
Object

Internal

RTL

Dependency

Graph

Data-flow
Analysis

Optimization
Routines

Tk
Routines

Display
Routines

Instruction
Scheduling

Front End

Lexical Analysis
Tcl Shell

RTL

Code Expander

Semantic Analysis

Back End (IaGO)

Code Generation

Abs-code

Figure 1: Overview of the vpcc/IaGO compiler

The front end of the compiler parses C source code

and generates naive (but correct) code for a simple abstract

machine (Abs-code). The code expander translates the

abstract machine code into Register Transfer Lists (RTLs);

an RTL is a machine specific representation for the target

machine specified in a machine independent form. This

independent form allows dataflow analysis and many opti-

mization routines to operate in a machine independent man-

ner. Once an RTL description of the program is generated,

it is written to a file and the optimization phase is initiated.

A compilation driver program is responsible for coordinat-

ing the execution of the parts of the compiler — including

pre-processing, assembly and linking operations.

The second phase of the vpcc compiler has been mod-

ified to support IaGO. IaGO consists of a Tcl interpreted

shell, a set of routines to perform dataflow analysis, code

optimization and graphical display. When IaGO is invoked

during the compilation process, a shell script is provided to

the interpreter in addition to any command line arguments

(provided by the driver program). Normal operation of

IaGO starts with a series of commands (specified by the

script file) to load the intermediate RTL description of the

program, perform dataflow analysis to construct a depen-

dency graph and apply whichever optimization transforma-

tions to the code are specified by the script. Once optimiza-

tion is complete, instruction scheduling is initiated to gener-

ate a final object (assembly code) listing of the program.

The driver program can continue with assembly and linking

phases if requested.

4. Optimization Script Language

The first component of the IaGO system is an IaGO

command shell. This command shell is simply a Tcl inter-

preter augmented with optimization and display routines.

Command line arguments received from the compilation

driver determine the location of the IaGO script controlling

the optimization process. This will usually involve specify-

ing an IaGO command script on the vpcc command line.

Application of optimization routines is controlled by the

script; RTL files will be opened, contents read, optimiza-

tions performed and assembly code generated by invoking

various Tcl and IaGO procedures. An interactive shell can

also be specified for simple textual interaction between

IaGO and the developer.

Most IaGO routines operate on a global RTL depen-

dency graph; all code translations maintain the same inter-

nal format, so there is no required ordering of optimization

operations. This provides the command script with (almost)

complete freedom in scheduling code translations. In addi-

tion to the optimization routines, IaGO registers several data

conversion routines to allow access to the internal data

structures by the command interpreter. This allows the

command scripts to access internal structures as shell vari-

ables and to determine control flow of the optimization pro-

cess accordingly. The IaGO command language then has

the full programmability found in the Tcl language. Itera-

tion can be performed to control the application of any of

the optimization (or dataflow analysis) routines. More

aggressive scheduling of transformations can then be

attempted without sacrificing correctness of target code or

determination (guaranteed compiler optimization termina-

tion).

5. Interactive Optimization

Another useful capability of the IaGO system is its

ability to interact with the compiler developer to generate

more efficient code or to develop new optimization tech-

niques. A menu driven graphical interface can be created

(from the IaGO command shell) to provide detailed infor-

mation about the internal state of the optimization process

and to accept commands input by the developer.



When using this graphical interface, the structure of

the program is viewed as a set of basic blocks, specified in

RTL format, displayed in Tk listboxes. Control flow is dis-

played as directed arcs between the basic block (on a Tk

canvas). This representation of control flow can be aug-

mented with information regarding data dependencies, reg-

ister usage or higher level semantic structures such as loops.

Many of the display characteristics can be specified by the

command shell allowing more of the internal representation

to be viewed.

The primary mechanisms for direct manipulation of

the compilation process are Tk menus and a text editor.

Dataflow modifications are made by manipulating the items

on the canvas. RTLs can be directly manipulated by invok-

ing a text editor on the RTL representation of the code in a

basic block. This interaction between the compiler devel-

oper and the optimization routines allows for more sophisti-

cated transformations to be applied. Compilers have little

difficulty with applying global transformations (e.g. global

register allocation or code motion) across the entire scope of

a function. People have far more difficulty applying these

types of transformations. However, people are proficient at

determining semantic information about the application.

This often allows human intervention to avoid overly con-

servative scheduling decisions by the optimizer. An exam-

ple of this is the analysis required to guarantee that no mem-

ory (aliasing) hazards exist in the schedule. Often a person

can provide this guarantee by examining the application

when the compiler cannot guarantee this with a detailed

analysis of the low lev el semantics found in the intermediate

code.

The ability to quickly evaluate new optimization

strategies by interactively applying transformations provides

the compiler developer with a powerful tool for studying the

underlying characteristics of advanced architectures.

6. Future Research

Although we have presented IaGO as a compiler

writer’s tool, it can be applied to many other programming

projects with only modest alterations. For instance, the

multiprocessing community accepts that a truly general-

purpose parallel architecture will never exist, and conse-

quently, the programmers of such machines must become

intimately familiar with their particular architectures. If

they do not, they fail to harness the full power which the

machine has to offer. Even today, in supercomputer centers

such as the Lawrence Livermore National Laboratory,

efforts to fine tune applications consume a large portion of

the programming professionals. For these individuals, a tool

such as IaGO would allow much greater interaction between

the compilation model and themselves. Rather than a one-

way conversation with the compiler through compiler direc-

tives embedded in some parallel dialect of Fortran or C,

IaGO would allow the programmer to interact with the

optimization process directly. The compiler performs the

computations it does best (e.g. dependency analysis and

global register allocation), while the programmer provides

the advice that the software can not determine with certainty

(the absense of pointer hazards and function side-effects).

IaGO allows the programmer to communicate higher-level

aspects of the program design to the compiler — aspects

which are all but invisible at the level of basic blocks and

RTLs. Again, the fact that detailed architectural knowledge

is required to use IaGO effectively in this way is not a draw-

back because such knowledge is needed anyway by the

application tuners working on high-performance platforms.

Because of the ease of programming that Tcl pro-

vides, several additions to IaGO’s displayed information are

possible, all of which serve to enrich the nature of this bidi-

rectional programmer/compiler interaction. An obvious

extension is to include profiling information so that the pro-

grammer sees clearly which basic blocks are crucial to high

performance. Similarly, common compiler notions such as

live ranges, natural loops, and use-def chains are all easily

incorporated into IaGO, allowing the programmer to per-

form high-level code reorganization to promote the com-

piler’s skill at code motion and register allocation.

IaGO has displayed great benefit in the development

of new optimization strategies for the MISC processor. We

believe that the capabilities found in an interactive compila-

tion environment can be applied to a more general field of

programming. Once the development of IaGO has matured

in its existing configuration, we wish to port it to a compiler

with greater availability such as gcc.

References

[BeDa91] M. E. Benitez and J. W. Davidson, “Code

Generation for Streaming: an Access/Execute

Mechanism”, Proceedings of the Fourth

International Conference on Architectural

Support for Programming Languages and

Operating Systems, Santa Clara, CA (April

8-11, 1991), pp. 132-141.

[Site93] R. L. Sites, “Alpha AXP Architecture”,

Communications of the ACM, vol. 36, no. 2

(February, 1993), pp. 33-44.

[Stal] R. M. Stallman, Using and Porting GNU CC,

Free Software Foundation, Inc. 1991.

[TyFP92] G. Tyson, M. Farrens and A. Pleszkun,

“MISC: A Multiple Instruction Stream

Computer”, Proceedings of the 25th Annual

International Symposium on

Microarchitecture, Portland, Oregon

(December 1-4, 1992), pp. 193-196.


